
1. If p = 7 and q = 2(p− 5), compute q(p+ 5)− 2.

(A) 286 (B) 142 (C) 100 (D) 61 (E) 46

proposed by: Aidan Zhang

Solution: Substituting p = 7 into the equation for q yields q = 2(7− 5) = 2(2) = 4. Then,

q(p+ 5)− 2 = 4(7 + 5)− 2 = 4(12)− 2 = (E) 46 .

2. The operation § is defined by x§y = x2 + xy + y2. Find (1§2)§3.
(A) 49 (B) 58 (C) 70 (D) 79 (E) 91

proposed by: Aidan Zhang

Solution:

(1§2)§3 = (12 + 1 · 2 + 22)§3
= 7§3
= 72 + 7 · 3 + 32

= (D) 79

3. In the figure shown, an equilateral triangle is split into four congruent smaller triangles, one
of which is split again in the same way. What fraction of the figure is shaded?

(A)
1

2
(B)

13

24
(C)

5

9
(D)

9

16
(E)

7

12
proposed by: Aidan Zhang

Solution: In total, there are 4 · 4 = 16 equilateral triangles of the smallest size in the figure.

Of these, 9 are shaded, so the total shaded area is (D)
9

16
.

4. Compute 2021 +
2023! + 2024!

2022!× 2025
, where n! = 1× 2× . . .× (n− 1)× n.

(A) 4044 (B)
4044

2023
(C)

4088484

2023
(D)

4094552

2023
(E) 2023

proposed by: Aidan Zhang

Solution: First, examine the expression
2023! + 2024!

2022!× 2025
. Since 2023! = 2022! × 2023 and

2024! = 2022! × 2023 × 2024, the numerator can be factored as 2022!(2023 + 2023 × 2024).
Now, 2023 can be factored out of 2023+ 2023× 2024 to yield 2023(1 + 2024) = 2023× 2025.
The numerator is therefore 2022! × 2025 × 2023. Cancelling with the 2022! × 2025, the
expression ends up as just 2023.

Finally, 2021 is added for the final answer of (A) 4044 .



5. Cards are drawn one at a time from a deck containing 3 red cards and 2 black cards. What
is the probability that all the black cards are drawn before all the red cards are drawn?

(A)
2

5
(B)

1

10
(C)

7

10
(D)

3

5
(E)

2

3
proposed by: Daniel Chen

Solution: We are looking for the probability that the last card drawn is not black. This is

simply the probability that the last card is red, which is (D)
3

5
.

6. Positive numbers x, y, a, b satisfy the inequalities x < y and a < b. How many of the following
inequalities are necessarily true?

(i) x+ a− b < y − a+ b

(ii)
x+ y

b
<

x+ y

a

(iii)
x

b
<

y

a

(iv) a− y < b− x

(v) ax < by

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

proposed by: Aidan Zhang

Solution: All (E) 5 inequalities are true.

(i) x+ a− b < y − a+ b ⇐⇒ x+ 2a < y + 2b, which is true because x < y and 2a < 2b.

(ii)
x+ y

b
<

x+ y

a
⇐⇒ a(x+ y) < b(x+ y) ⇐⇒ a < b, which is given.

(iii)
x

b
<

y

a
⇐⇒ ax < by, which is clearly true.

(iv) a− y < b− x ⇐⇒ a+ x < b+ y, which is also clearly true.

(v) ax < by is the same inequality as (iii) and is true.

7. The perpendicular bisector of a radius of a circle intersects the circle at points A and B.
Given that AB = 12, find the radius of the circle.

(A) 2
√
3 (B) 6 (C) 4

√
3 (D) 8 (E) 6

√
2

proposed by: Aidan Zhang



Solution: Let r be the length of the radius. Let O be the center of the circle and let the
radius intersect AB at point M . Since OA = OB, side OM is shared, and ̸ OMA = ̸ OMB,
△OAM ∼= △OBM . Thus, AM = BM = 6. We have

OM2 +AM2 = OA2 =⇒
(r
2

)2
+ 62 = r2.

Solving yields r = (C) 4
√
3 .

8. How many possible values of a are there such that x2 + ax + 36 divides the product x(x +
1)...(x+ 35)(x+ 36)?

(A) 3 (B) 4 (C) 5 (D) 6 (E) 12

proposed by: Aidan Zhang

Solution: Let the two roots of x2 + ax + 36 be r and s. By Vieta’s Formulas, rs = 36.
Additionally, r and s must be two distinct values from −1,−2, . . .− 36 due to the divisibility
condition. The possible pairs of (r, s) are thus (−1,−36), (−2,−18), (−3,−12), (−4,−9). (-
6,-6) does not work because there is only one factor of (x + 6) in the product. Each of the

pairs gives a distinct value of a, so the answer is (B) 4 .

9. Daniel has x dollars and Elaine has y dollars. Elaine gives Daniel a fifth of her money, which
gets added to his bank account. Daniel then gives Elaine a third of his total money, which
gets added to her bank account. Finally, Elaine gives Daniel a quarter of her money, after
which she notices that they both have the same amount of money. Find the ratio x

y .

(A)
1

2
(B)

2

3
(C)

3

5
(D)

4

7
(E)

5

7
proposed by: Aidan Zhang

Solution: Track the amount of money that Daniel and Elaine has after each transaction:

(x, y) −→
(
x+

y

5
,
4y

5

)
−→

(
2x

3
+

2y

15
,
x

3
+

13y

15

)
−→

(
3x

4
+

7y

20
,
x

4
+

13y

20

)
We know that at the end they have the same amount of money, so

3x

4
+

7y

20
=

x

4
+

13y

20
=⇒ x

y
= (C)

3

5
.

10. A game of whack-a-mole consists of one mole and eight holes. On each turn, the player
chooses a hole to whack randomly and the mole chooses a hole to pop out of randomly. If
the player plays for seventeen turns, then m

n is the average number of times they will hit the
mole, where m, n are co-prime integers. What is m+ 10n?

(A) 87 (B) 178 (C) 12 (D) 78 (E) 97

proposed by: Shanna Xiao

Solution: On each turn, the player has a 1
8 chance to whack the mole. In seventeen turns,

the average number of times the player will hit the mole is 17 · 1
8 = 17

8 . m+ 10n = (E) 97 .

11. A function is defined recursively with f(0) = 1 and f(x) = (2x−1)f(x−1). Find the smallest
integer n such that f(n) is divisible by 20232.

(A) 49 (B) 60 (C) 73 (D) 91 (E) 119

proposed by: Aidan Zhang



Solution: First, notice that 20232 = 72 × 174. f(x) has an extra factor of 17 compared to
f(x − 1) only when 2x − 1 is a multiple of 17. In order to pick up enough factors of 17, we
need to cover the 4 smallest odd multiples of 17 (2x− 1 is always odd), which are 17, 51, 85,

and 119. Thus, the smallest possible value of x is 2x− 1 = 119 or x = (B) 60 .

Remark: We can also check that factors of 7 are gained when x = 4 and 11, which are
smaller than 60.

12. A sequence is defined with a1 = 2, a2 = 3, and an = an−1an−2 − 1 for n > 2. Find the last
digit of a2023.

(A) 7 (B) 9 (C) 4 (D) 2 (E) 5

proposed by: Aidan Zhang

Solution: Notice that only the last digits of the previous terms can influence the last digit
of the next term. This motivates us to write out only the last digit of the first few terms of
the sequence using the recurrence relation:

2, 3, 5, 4, 9, 5, 4, 9, 5 . . .

We can see that the sequence repeats every 3 terms, which means that we only need the
remainder when 2023 is divided by 3 to determine its value. 2023 has remainder 1 modulo

3, so the last digit of a2023 is (C) 4 .

13. Evaluate (
1− 1

4

)(
1− 1

9

)(
1− 1

16

)
. . .

(
1− 1

2025

)
.

(A)
23

45
(B)

4

2025
(C)

1

2
(D)

1013

2025
(E)

169

529
proposed by: Charles Ran

Solution:

The key idea is that each term 1− 1
n2 can be expressed as n−1

n · n+1
n . Let’s use this to write

out the whole expression:(
1

2
· 3
2

)(
2

3
· 3
4

)
. . .

(
43

44
· 45
44

)(
44

45
· 46
45

)
We can telescope this product by noticing that n+1

n in each nth term cancels with the (n+1)−1
(n+1)

in the n+ 1th term. We are therefore left with simply 1
2 · 46

45 = (A)
23

45
.

14. If f(x) is a quadratic that satisfies f(1) = f(f(1)) = 2, compute f(5)− 6f(3).

(A) 6 (B) 2 (C) − 2 (D) − 10 (E) 0

proposed by: Daniel Chen

Solution: Notice that the roots of f(x)− 2 are 1 and f(1) = 2. We can now write

f(x)− 2 = a(x− 1)(x− 2) =⇒ f(x) = ax2 − 3ax+ 2a− 2

where a is the leading coefficient of the quadratic. Finally, directly plug in the desired
expression:

f(5)− 6f(3) = 25a− 15a+ 2a− 2− 6(9a− 9a+ 2a− 2)

= (D) − 10 .



15. For how many bases b, with 3 < b < 2023, is 2023b divisible by 7?

(A) 576 (B) 578 (C) 866 (D) 867 (E) 1156

proposed by: Aidan Zhang

Solution: Converting to base 10, 2023b = 2b3 + 2b + 3. To satisfy the divisibility by 7
criteria, we must have

2b3 + 2b+ 3 ≡ 0 mod 7.

Checking values of b from 0 to 6, we see that only 1 and 3 work. Thus b ≡ 1, 3 mod 7, giving
2 × 2023/7 = 578 possible values. However, b > 3, which eliminates the cases 1 and 3. The

answer is thus (A) 576 .

16. Inside of square ABCD with side length 3, a circle ω with radius 1 is drawn such that it is
tangent to both AB and BC. Point G lies on CD such that AG is tangent to ω. Find the
area of triangle AGD.

(A)
27

8
(B) 3 (C) 4 (D)

7

2
(E)

15

4
proposed by: Michael Li

Solution: Define points as the diagram shows below. Extend AG and BC to meet at F .
Let E be on the extension of AD such that FE is perpendicular to AD. Let GD = x and
CF = y. Let P,Q,R be where ω meets AB,AG,BC, respectively.

Note that AQ = AP = 2 since △APO ∼= △AQO by HL congruence. Similarly, QF = RF =
2+y. Since CDEF is a rectangle, we have DE = CF = y =⇒ AE = 3+y. By Pythagorean
Theorem on △AEF , we have:

AF 2 = AE2 + FE2 =⇒ (4 + y)2 = (3 + y)2 + 32 =⇒ y = 1.

Additionally, △GCF ∼ △GDA by AA similarity. We have:

CF

CG
=

AD

DG
=⇒ 1

3− x
=

3

x
=⇒ x =

9

4
.

Thus, the area of △AGD is
1

2
· 9
4
· 3 = (A)

27

8
.



17. Avogadro, Bernoulli, Cauchy, Darwin, Einstein, Fermat, and Galileo are lining up to enter
the exam room for OMC. How many ways are there for them to do so if Avogadro cannot be
first in line, Cauchy cannot be 3rd in line, Einstein cannot be 5th in line, and Galileo cannot
be last in line?

(A) 2790 (B) 2250 (C) 6 (D) 2880 (E) 2472

proposed by: Oscar Zhou

Solution: Use complementary counting, and find the total number of cases minus the number
of illegal cases. The number of total cases is simply 7! = 5040. For the number of illegal
cases, count by the Principle of Inclusion-Exclusion: We can directly count the cases where
one of the rules are violated, but then we overcount the cases where exactly two of the
rules are violated and we need to subtract them from the total. Similarly, we overcount
or undercount the cases where exactly 3 or 4 of the rules are violated. Adding the 1 and
3 violation cases and subtracting the 2 and 4 violation cases eliminates overcounting. To
calculate the number of cases for each number of rule violations, determine the number of
ways to select who violate(s) the restrictions, and multiply by the number of ways the others
can be seated. This gives a total of(

4

1

)
× 6!−

(
4

2

)
× 5! +

(
4

3

)
× 4!−

(
4

4

)
× 3! = 2250

illegal cases, so there are 5040− 2250 = (A) 2790 legal cases.

18. In triangle ABC, point D lies on BC such that ̸ ADB = 90◦. If AD = 5, BD = 2, and
̸ BAC = 45◦, find the length of DC.

(A) 2 (B)
15

7
(C) 3 (D)

30

13
(E)

30

17
proposed by: Michael Li

Solution 1: Reflect point D across AB,AC to E,G respectively. This implies that△AEB ∼=
△ADB and △AGC ∼= △ADC. Thus, ̸ EAG = 90◦. Furthermore, ̸ AEB = ̸ AGC = 90◦.
Extend EB and GF to meet at F . This forms a square AEFG with side length 5. Since
EB = 2, BF = 3. Let DC = x. Then, CF = GF−GC = GF−DC = 5−x. By Pythagorean
Theorem, we have:

BF 2 + FC2 = BC2 =⇒ 32 + (5− x)2 = (2 + x)2 =⇒ x = (B)
15

7
.

Solution 2: We will use the tangent angle subtraction formula to solve. Let ̸ BAD = α,
which gives ̸ CAD = 45◦ − α. Then, we have:

tan(45◦ − α) =
tan(45◦)− tan(α)

1 + tan(45◦) tan(α)
=

1− 2
5

1 + 2
5

=
3

7
.

Note that tan(45◦ − α) =
DC

5
=⇒ DC

5
=

3

7
=⇒ DC = (B)

15

7
.



19. How many ways can the shown figure be painted with six distinct colours if no two neighboring
regions can share the same colour?

(A) 9720 (B) 12960 (C) 14400 (D) 15480 (E) 17280

proposed by: Aidan Zhang

Solution: Label the regions as indicated below:

Without loss of generality, there are 6 possible choices to colour region A. Since B cannot
be the same colour as A, there are 5 ways to colour B. Likewise, C borders both A and B
so there are 4 choices for C, and 3 ways to colour D.

Now, we can proceed with casework on the colour of E.

Case 1: E is the same colour as A

There are now 4 possible choices to colour each of regions F and G, or 1× 4× 4 = 16 ways
in total.

Case 2: E is not the same colour as A

There are 3 possible colours for region E, since it cannot be the same colour as regions A,
C, or D. Now, there are also 3 choices for both of regions F and G (since F can’t be the
same colour as A, C, or E, and G can’t be the same colour as A, D, or E). There are thus
3× 3× 3 = 27 ways in total in this case.

Combining the cases gives 16 + 27 = 43 ways to colour regions E,F,G after A,B,C,D have
been coloured.

The total number of valid solutions is therefore

6× 5× 4× 3× 43 = (D) 15480 .



20. Player 1 and Player 2 are playing a game. On each turn, a fair coin is flipped. If it lands
heads, Player 1 moves forward one square. If it lands tails, Player 2 moves forward one
square. A player wins when they are 5 squares in front of the other player. If Player 1 is
currently 1 square in front of Player 2, then the probability that Player 1 wins is a

b , where a,
b are co-prime integers. What is 2a+ 3b?

(A) 21 (B) 19 (C) 8 (D) 17 (E) 23

proposed by: Shanna Xiao

Solution 1: Let Pn be the probability Player 1 wins when it is n squares in front of Player
2. P0 =

1
2 as they are at an equal state. P5 = 1 as Player 1 is at a winning state. For n = 1,

2, 3, 4, Pn = 1
2Pn−1+

1
2Pn+1 as there is an equal chance for player 1 to either gain one square

or lose one square on the next move. Solving the system of equations, P1 = 3
5 . Therefore

2a+ 3b = (A) 21 .

Solution 2: Recognize that the problem is equivalent to a random walk starting at (1, 0)
and the question is asking for the probability of reaching (5, 0) before (−5, 0). Therefore the

probability is equal to 6
4+6 = 3

5 , and 2a+ 3b = (A) 21 .

21. In equilateral triangle ABC, AB = 6. Consider a point P which satisfies AP = 3. Let Q lie
on PC such that CQ : QP = 1 : 2. The minimum possible length of BQ can be written in
the form a

√
b+ c, where a, b, c are integers and b is not divisible by the square of any prime.

Find a+ b+ c.

(A) 11 (B) 12 (C) 8 (D) 10 (E) 14

proposed by: Michael Li

Solution: Let D be on AC such that AD : DC = 2 : 1. Consider the locus of points P and
Q. The locus of P is a circle of radius 3 around A. The locus of Q is a circle of radius 1 around
D, since we can project P to Q and A to D by scaling by a factor of 1

3 about point C. Since
the shortest distance from two points is a straight line, and we know that Q is on a circle
around D, the shortest possible distance of BQ is BD−QD. By law of cosines, BD = 2

√
7.

Thus, the shortest distance is BQ = 2
√
7−1. This means that a+b+c = 2+7−1 = (C) 8 .



22. The largest real solution to x4+2x3−1686x2−6x+9 = 0 can be expressed as a+
√
b, where

b is a positive integer. What is 10a+ b?

(A) 228 (B) 234 (C) 597 (D) 603 (E) 2012

proposed by: Shanna Xiao

Solution: Rearrange the equation to become x4 + 2x3 − 5x2 − 6x + 9 = 1681x2. The left
side is equal to (x2+x− 3)2. Then the equation becomes (x2+x− 3)2 = (41x)2. Moving all
terms to the left to form a difference of squares, (x2+x−3+41x)(x2+x−3−41x) = 0. This
gives the two quadratics x2+42x−3 = 0 and x2−40x−3 = 0. Using the quadratic formula,

the largest real solution to either equation is x = 20+
√
403. Therefore 10a+ b = (D) 603 .

23. How many ways are there to completely tile a 3× 10 grid with 1× 2 rectangles?

(A) 418 (B) 243 (C) 162 (D) 3888 (E) 571

proposed by: Jason Sun

Solution: Let Tn be the number of ways to completely tile a 3×n grid with 1×2 rectangles.
Notice that the number of ways to tile a 3× n grid such that it cannot be decomposed into
2 smaller 3× i and 3× j tilings is 3 when n = 2, and 2 otherwise. We can consider the ways
to break the grid down into a sum of smaller Ti tilings, which gives us the recursion

Tn = 3Tn−2 + 2Tn−4 + 2Tn−6 + . . .

as for each case we break the 3 × n grid into a 3 × 2i tiling which cannot be broken down
further (this is to avoid overcounting) and a 3 × (n − 2i) tiling Tn−2i. T0 = 1, and we can

calculate T2 = 3, T4 = 11, T6 = 41, T8 = 153, and finally T10 = (E) 571 .

24. Parallelogram ABCD has AB = 17 and BC = 10. Two circles with diameters AB and BC
respectively are drawn, which intersect each other at points B and P with BP = 8. If the
two diagonals of ABCD have lengths x and y, find |x2 − y2|.
(A) 266 (B) 538 (C) 104 (D) 310 (E) 907

proposed by: Aidan Zhang

Solution: Since AB and BC are diameters and P lies on their circles, ̸ APB = ̸ BPC =
90◦. By Pythagorean Theorem on triangles △APB and △BPC, AP = 15 and CP = 6.
Thus, AC = 21.

Let the two diagonals AB and BC intersect at point Q. Note that ̸ BPQ is right because

Q lies on
−→
PA and ̸ BPA is right. Also, note that since diagonals of a parallelogram bisect

each other, P is the midpoint of AC so CQ =
21

2
. Now, PQ = CQ− CP =

21

2
− 6 =

9

2
.

BQ =
√

BP 2 + PQ2 =

√
82 +

(
9

2

)2

=

√
337

2
.

Since Q bisects BD, BD = 2BQ =
√
337. Finally, the absolute difference between the squares

of the diagonals is

|AC2 −BD2| = |212 −
√
337

2| = |441− 337| = (C) 104 .



25. The minimum value of√
x2 + y2 +

√
x2 + y2 + 14x+ 49 +

√
x2 + y2 − 16y + 64,

where x and y are real numbers, is z. If z2 = a+ b
√
c, where c is not divisible by the square

of any prime, find a+ b+ c.

(A) 200 (B) 128 (C) 256 (D) 131 (E) 172

proposed by: Michael Li

Solution: Define the points on the coordinate plane: A(0, 0), B(−7, 0), C(8, 0), P (x, y). We
will turn this into a geometry problem. We are essentially finding the point P where the
distance of AP + BP + CP is minimized, as this is equal to the expression through the
distance formula. Rotate △APC 60◦ outwards of △ABC, such that P goes to P ′ and C
goes to C ′. We will prove that the shortest distance possible is BC ′.

Firstly, because △AP ′C ′ is a rotation of △APC, P ′C ′ = PC.
Secondly, because of the rotation, AP = AP ′, ̸ PAP ′ = 60◦. Thus, P ′P = AP
Thirdly, BP = BP .

Thus, BP,P ′P, P ′C ′ is a series of line segments connecting B and C ′. Since the smallest
distance between two points is a straight line, the minimal distance AP +BP +CP is BC ′.
This is indeed achievable when P lies on BC ′.

Note that CC ′A is an equilateral triangle, so C ′ must have coordinates (4
√
3, 4). Thus,

z2 = BC ′2 = 42 + (7+ 4
√
3)2 = 113+ 56

√
3. We have a+ b+ c = 113+ 56+ 3 = (E) 172 .


