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Part A

For the questions in part A, a correct answer will receive full marks. Part marks may
be awarded if relevant work is shown in the space provided in the contest booklet.

1. In regular tetrahedron ABCD with side length 1, point P lies on AB such that

the shortest distance from P to line CD is
3
√
2

5
. Find the product of all possible

values of AP .

proposed by: Daniel Chen

Solution:
Let Q be the point on CD such that PQ is perpendicular to CD. By definition, PQ
is the shortest distance between P and CD. Using symmetry, Q is the midpoint
of CD, and we can use the ratio of sides in a 30 − 60 − 90 triangle to find that

AQ = BQ =
√
3
2 .

Now we present two ways of finishing this problem:

Method 1: Stewart’s Theorem
Let AP = x. Applying Stewart’s on △ABQ, we have

x(1− x) +

(
3
√
2

5

)2

=

(√
3

2

)2

x+

(√
3

2

)2

(1− x)

x2 − x+
3

100
= 0

Which has positive roots. By Vieta’s theorem, the product of possible values of x

is
3

100
.

Method 2: Pythagorean Theorem
Let the foot of the altitude from Q to AB be E, and set PE = x. By the

Pythagorean Theorem, QE =
√
2
2 . Now we have

x2 +

(√
2

2

)2

=

(
3
√
2

5

)2

x = ±
√

11

50
=⇒ AP =

1

2
±
√

11

50

From there, we can calculate the product to be
3

100
.



2. Find all pairs of positive integers (a, b) such that

gcd(a, b) + lcm(a, b) = a+ b+ 6.

proposed by: Charles Ran

Solution:

Set k = gcd(a, b), and write a = km, b = kn. Note that gcd(m,n) = 1 and
lcm(a, b) = lcm(km, kn) = kmn. We substitute this into the equation and do a
key factoring:

k + kmn = km+ kn+ 6

⇐⇒ k(m− 1)(n− 1) = 6

Thus, 6 must be divisible by k, so k ∈ {1, 2, 3, 6}. We proceed with casework on k,
counting the number of positive integer solutions (m,n) for each case, each giving
a unique solution (a, b).

Case I: k = 1
(m− 1)(n− 1) = 6

In this case, (m,n) ∈ {(7, 2), (4, 3), (3, 4), (2, 7)}. We have four solutions.

Case II: k = 2
(m− 1)(n− 1) = 3

In this case, (m,n) ∈ {(4, 2), (2, 4)}. However, none of these cases satisfy
gcd(m,n) = 1, and we have no solutions.

Case III: k = 3
(m− 1)(n− 1) = 2

In this case, (m,n) ∈ {(3, 2), (2, 3)}, which gives the two solutions (a, b) ∈
{(9, 6), (6, 9)}.

Case IV: k = 6
(m− 1)(n− 1) = 1

In this case, (m,n) = (2, 2). However, gcd(m,n) ̸= 1 and we have no solutions.

In total, we count 6 solutions: (a, b) ∈ {(7, 2), (4, 3), (3, 4), (2, 7), (9, 6), (6, 9)} .



3. The polynomial z6 − 7z5 + 4 has 6 distinct roots. What is the sum of the 6th
powers of the roots?

proposed by: Michael Li

Solution:
Let the roots be r1, r2, · · · r6. We find an expansion for r61 + r62 + · · · r66 using
Newton’s Sums. Define Sk = rk1 + rk2 + · · · rk6 .
By Vieta’s or applying Newton’s sums, we have S1 = 7. We then have:

S1 = 7

S2 = 7 · S1 − 2 · 0
S3 = 7 · S2 − 0 · S1 + 3 · 0
S4 = 7 · S3 − 0 · S2 + 0 · S1 − 4 · 0
S5 = 7 · S4 − 0 · S3 + 0 · S2 − 0 · S1 + 5 · 0
S6 = 7 · S5 − 0 · (· · · )− 6 · 4

= 76 − 24

= 117625

Thus, we have r61 + r62 + · · · r66 = S6 = 117625 .



4. A unit cube has one bug standing at each vertex. Every second, each bug chooses
one of the three adjacent vertices to move to, uniformly at random. After 2 seconds,
what is the expected number of vertices with at least one bug standing on it?

proposed by: Shanna Xiao

Solution:
Let P the probability that a vertex has at least one bug on it after 2 seconds. We
can instead consider the probability that the vertex does not have a bug, which
contains two conditions:

1. The bug previously on the vertex moves somewhere else. The bug can move
anywhere on the first move, and just needs to not go back on the second move, so

this is
2

3
.

2. No other bug arrives on the vertex. Consider just one of the other bugs. By
parity, it must be exactly 2 moves away. Then the probability that it travels to
the current vertex is 2

9 . There are 3 possible other bugs, so by complementary
counting, the combined probability is(

1− 2

9

)3

=
343

729
.

Now we can finally calculate the probability P :

P = 1−
(
2

3

)(
343

729

)
=

1501

2187

Since this is the same for all 8 vertices, we apply linearity of expectation to find

that the answer is
12008

2187
.



5. Let . . . , a−2, a−1, a0, a1, a2, . . . be an infinite sequence of real numbers satisfying

an = a1an−1 + a1

for all integers n. If there exists a value of n such that

an−1 + 1

a−n
= −729,

compute the sum of all possible integer values of a1.

proposed by: Daniel Chen

Solution:
Assume that a1 ̸= 0, 1, otherwise an ≡ 0, n respectively, leading to no solution.
We claim that for all integers n,

an =
an+1
1 − a1
a1 − 1

.

We will prove this by induction. The base case is a1 = a1, which is obviously true.
Assume that the induction hypothesis is true for an. Then

an+1 = a1

(
an+1
1 − a1
a1 − 1

+ 1

)
=

an+2
1 − a1
a1 − 1

Similarly, in the other direction,

an−1 =
an
a1

− 1

=
an+1 − a1
a1(a1 − 1)

− 1

=
an1 − a1
a1 − 1

So our induction is complete. Now we can directly plug this expression into the
equation:

−729 =

(
an1 − a1
a1 − 1

+ 1

)(
a1 − 1

a1−n
1 − a1

)
= −an−1

1

Thus we just need 729 to be a perfect power of a1 in order to have an integer
solution of n. The possible values of a1 are ±3, 9,±27, 729, which sum to 738 .



6. Let ABC be a triangle with AB = 5, AC = 12, and BC = 13. Points E and F
are on AB and AC, respectively, such that EF is parallel to BC. Point D is on
BC such that ∠EDF = 90◦. When (DE +DF )/(AE + AF ) is maximized, what
is AD?

proposed by: Shanna Xiao

Solution 1:
Construct D′ such that BD′ ∥ ED and CD′ ∥ FD. ∠BD′C = ∠EDF = 90◦,
which means that ABD′C is a cyclic quadrilateral with diameter BC. By similar
triangles, we have the following ratio:

AE

AB
=

AF

AC
=

ED

BD′ =
FD

CD′

DE +DF

AE +AF
=

BD′ + CD′

AB +AC

AB + AC = 5 + 12 = 17, so all we need to do is to maximize BD′ + CD′. By
Pythagorean Theorem, (BD′)2 + (CD′)2 = BC2 = 169. By the Cauchy-Schwarz
inequality,

((BD′)2 + (CD′)2)(12 + 12) ≥ (BD′ + CD′)2

13
√
2 ≥ BD′ + CD′

Equality occurs when BD′ = CD′. Since A, D, D′, are collinear by homothety,
AD must be the angle bisector of ∠BAC. By angle bisector theorem, BD = 65

17 ,

CD = 156
17 . By Stewart’s, AD =

60
√
2

17
.



Solution 2:
Let EF = x. Then AE = 5

13x, AF = 12
13x. ∠EAF + ∠EDF = 180◦ because

5-12-13 is a Pythagorean triple, so AEDF is a cyclic quadrilateral. Similarly to
solution 1, we can use the Cauchy-Schwarz inequality:

((DE)2 + (DF )2)(12 + 12) ≥ (DE +DF )2

x
√
2 ≥ DE +DF

The equality case gives the maximum value, which implies that DE = DF = x
√
2

2 ,
so △DEF is an isosceles right triangle. To calculate x, we equate the sum of the
heights of △AEF and △DEF to that of △ABC:

60

13
× x

13
+

x

2
=

60

13
=⇒ x =

1560

289
.

Finally, to calculate AD, we can directly apply Ptolemy’s Theorem:

AD × x =
x
√
2

2

(
5x

13
+

12x

13

)
AD =

60
√
2

17
.



7. Point D lies on the circumcircle of triangle ABC on arc BC not containing A.
Point E lies on line segment BD such that DE = AC. Given that AD ⊥ CE,
BC = 24, CE = 7, and the area of △ABC is 56, find the area of △CDE.

proposed by: Daniel Chen

Solution 1:
Through an angle chase using the properties of cyclic quadrilaterals, we have

∠DEC = 90◦ − ∠EDA = 90◦ − ∠BDA = 90◦ − ∠BCA

∠EDC = 180◦ − ∠BAC

Additionally, DE = AC, so if we combine △ABC and △CDE, we get a right
triangle △BCE with legs BC and CE! Now the area can be directly calculated:

[CDE] = [BCE]− [ABC]

= 7× 12− 56

= 28 .



Solution 2 by Sabrina Yu:
Let H be the foot of the perpendicular from A to BC, and let F be the intersection
of AD and CE. [ABC] = BC × AH, so AH = 14

3 . Since ∠ADB = ∠ACB
and AC = DE, △AHC ∼= △EFD. This implies that CF = CE − EF = 7

3 .
Additionally, since ∠AHB = ∠DFC = 90◦ and ∠ABH = ∠FDC, △CFD ∼
△AHB.

Set DF = x. Then HC = x,BH = 24−x. Using similar triangle ratios on △CFD
and △AHB,

CF

AH
=

DF

HB
=⇒ 7

3
× 3

14
=

x

24− x
=⇒ x = 8.

Finally, we can directly calculate the area:

[CDE] =
1

2
DF · CE

= 28 .



Part B

For the following section, a complete and correct solution is required to receive full
marks. Part marks may be awarded for relevant work. Each question is worth 10 marks.

1. In Atticus’ 5th grade class, every pair of students are either friends or enemies.
Additionally, they are respectful kids, so they obey the following rules:

a) The enemy of my enemy is my friend.

b) The friend of my friend is my enemy. (they are very sensitive)

What is the maximum possible number of students in the class?

proposed by: Daniel Chen

Solution:
We will show that the maximum possible number of students is 5 .

For the sake of contradiction, assume that we can have 6 or more people in the
class. Note that we cannot have 3 people who are all friends or all enemies with
each other, otherwise there are two people who are both friends and enemies,
which is impossible. By pigeonhole, there exists three people who have the same
relationship with a person (friend or enemy). Since the enemy of the enemy is
a friend, and vice versa, all three of them must be friends or enemies. This is a
contradiction.

Now we show that it is possible to have 5 students. Make the 5 students stand in a
circle, and have each student be friends with their two neighbors and enemies with
any other student. No three people are all friends or all enemies, so this works.

Figure 1: Blue lines are friends, red lines are enemies.

Additionally, see Ramsey’s Theorem.

https://en.wikipedia.org/wiki/Ramsey%27s_theorem


2. A Goatjo number is a positive integer a that can be written as

a =
−2b

b2 − 3

for some rational number b. Determine the three smallest Goatjo numbers.

proposed by: Charles Ran

Solution:
Rewrite the equation as a quadratic in b:

ab2 + 2b− 3a = 0

Note that b2 ̸= 3. Using the quadratic formula,

b =
−2±

√
4 + 12a2

2a
=

−1±
√
1 + 3a2

a

Thus, a positive integer a is a Goatjo number if and only if

b =
−1±

√
1 + 3a2

a
∈ Q ⇐⇒

√
1 + 3a2 ∈ Z+

which is true if and only if 1 + 3a2 = c2 for some positive integer c. This is a Pell
equation:

c2 − 3a2 = 1

With a minimal solution (a1, c1) = (1, 2). Thus, all positive integer solutions
(ai, ci)i∈N are generated by

ci + ai
√
3 = (2 +

√
3)i

Setting i = 1, 2, 3, we obtain the three smallest solutions (a, c) ∈ {(1, 2), (4, 7), (15, 26)}.
Alternatively, we could choose to check values of a up to 15, which would be more
time consuming.
The three smallest Goatjo numbers are 1, 4, 15 .

https://artofproblemsolving.com/wiki/index.php/Pell_equation#Family_of_solutions
https://artofproblemsolving.com/wiki/index.php/Pell_equation#Family_of_solutions


3. An orbital sequence of a positive integer n is a sequence of non-negative integers
such that the sum of any two consecutive terms forms a unique divisor of n. For
example, 1, 1, 0, 3, 6 is a valid orbital sequence of 18, but 1, 2, 1, 8 is not. Let S(n)
be the maximum value of the sum of the terms over all orbital sequence of n. Prove

that there exists a value of n such that
S(n)

n
> 2023.

proposed by: Daniel Chen

Solution: For some positive integer n, consider the sequence

a1, a2, . . . , ad(n)+1

where d(n) represents the number of divisors of n, and ai + ai+1 = di, where di is
the ith smallest divisor of n. Setting a1 = 0, since ai + ai+1 = di > di−1 ≥ ai, we
must have ai+1 positive. This is clearly an orbital sequence of n. Hence,

S(n) ≥ a1 + a2 + . . . ad(n)+1

=
1

2
(σ(n) + a1 + ad(n)+1)

≥ 1

2
(σ(n))

Where σ(n) is the sum of the divisors of n. Now if we choose n = k! for some
positive integer k,

2S(n)

n
≥ σ(k!)

k!

≥
k∑

i=1

1

i

which is the harmonic series, and is well-known to diverge as k tends to infinity.
Hence S(n)

n is unbounded, and there exists some n where it is greater than 2023.


